Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Estimating optimal parameters for MRF stereo from a single image pair.

This paper presents a novel approach for estimating the parameters for MRF-based stereo algorithms. This approach is based on a new formulation of stereo as a maximum a posterior (MAP) problem in which both a disparity map and MRF parameters are estimated from the stereo pair itself. We present an iterative algorithm for the MAP estimation that alternates between estimating the parameters while fixing the disparity map and estimating the disparity map while fixing the parameters. The estimated parameters include robust truncation thresholds for both data and neighborhood terms, as well as a regularization weight. The regularization weight can be either a constant for the whole image or spatially-varying, depending on local intensity gradients. In the latter case, the weights for intensity gradients are also estimated. Our approach works as a wrapper for existing stereo algorithms based on graph cuts or belief propagation, automatically tuning their parameters to improve performance without requiring the stereo code to be modified. Experiments demonstrate that our approach moves a baseline belief propagation stereo algorithm up six slots in the Middlebury rankings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app