JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The effects of training in hyperoxia vs. normoxia on skeletal muscle enzyme activities and exercise performance.

Inspiring a hyperoxic (H) gas permits subjects to exercise at higher power outputs while training, but there is controversy as to whether this improves skeletal muscle oxidative capacity, maximal O(2) consumption (Vo(2 max)), and endurance performance to a greater extent than training in normoxia (N). To determine whether the higher power output during H training leads to a greater increase in these parameters, nine recreationally active subjects were randomly assigned in a single-blind fashion to train in H (60% O(2)) or N for 6 wk (3 sessions/wk of 10 x 4 min at 90% Vo(2 max)). Training heart rate (HR) was maintained during the study by increasing power output. After at least 6 wk of detraining, a second 6-wk training protocol was completed with the other breathing condition. Vo(2 max) and cycle time to exhaustion at 90% of pretraining Vo(2 max) were tested in room air pre- and posttraining. Muscle biopsies were sampled pre- and posttraining for citrate synthase (CS), beta-hydroxyacyl-coenzyme A dehydrogenase (beta-HAD), and mitochondrial aspartate aminotransferase (m-AsAT) activity measurements. Training power outputs were 8% higher (17 W) in H vs. N. However, both conditions produced similar improvements in Vo(2 max) (11-12%); time to exhaustion (approximately 100%); and CS (H, 30%; N, 32%), beta-HAD (H, 23%; N, 21%), and m-AsAT (H, 21%; N, 26%) activities. We conclude that the additional training stimulus provided by training in H was not sufficient to produce greater increases in the aerobic capacity of skeletal muscle and whole body Vo(2 max) and exercise performance compared with training in N.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app