JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel.

This study proposed a new design of a passive micromixer employing several J-shaped baffles in the tee channel to enhance mixing. The mixing performance of the device was investigated experimentally and by numerical simulation. The in-plane structured micromixer was fabricated using micromolding of SU-8 photoresist and PDMS. The mixing performance was demonstrated using image analysis to quantify the concentration distribution in the microchannel. The percentage of mixing increased as the number of baffles increased. The simulated and experimental results showed that the mixer with J-shaped baffles exhibited better mixing performance, and the percentage of mixing was about 1.2 to 2.2 times higher when compared to those without baffles, in the range of Reynolds number (Re) 5 to 350. The improvement in mixing performance was especially apparent at the short axial distance and at the lower Reynolds numbers. The results revealed that the J-shaped baffles could result in lateral convection in the main channel, resulting in improved mixing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app