Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Response to host volatiles by native and introduced populations of Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae) in North America and China.

Bark beetles (Coleoptera: Curculionidae, Scolytinae) have specialized feeding habits, and commonly colonize only one or a few closely related host genera in their geographical ranges. The red turpentine beetle, Dendroctonus valens LeConte, has a broad geographic distribution in North America and exploits volatile cues from a wide variety of pines in selecting hosts. Semiochemicals have been investigated for D. valens in North America and in its introduced range in China, yielding apparent regional differences in response to various host volatiles. Testing volatiles as attractants for D. valens in its native and introduced ranges provides an opportunity to determine whether geographic separation promotes local adaptation to host compounds and to explore potential behavioral divergence in native and introduced regions. Furthermore, understanding the chemical ecology of host selection facilitates development of semiochemicals for monitoring and controlling bark beetles, especially during the process of expansion into new geographic ranges. We investigated the responses of D. valens to various monoterpenes across a wide range of sites across North America and one site in China, and used the resulting information to develop an optimal lure for monitoring populations of D. valens throughout its Holarctic range. Semiochemicals were selected based on previous work with D. valens: (R)-(+)-alpha-pinene, (S)-(-)-alpha-pinene, (S)-(-)-beta-pinene, (S)-(+)-3-carene, a commercially available lure [1:1:1 ratio of (R)-(+)-alpha-pinene:(S)-(-)-beta-pinene:(S)-(+)-3-carene], and a blank control. At the release rates used, (+)-3-carene was the most attractive monoterpene tested throughout the native range in North America and introduced range in China, confirming results from Chinese studies. In addition to reporting a more effective lure for D. valens, we present a straightforward statistical procedure for analysis of insect trap count data yielding cells with zero counts, an outcome that is common but makes the estimation of the variance with a Generalized Linear Model unreliable because of the variability/mean count dependency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app