Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic beta-cell dysfunction and apoptosis
Miriam Cnop, Laurence Ladriere, Paul Hekerman, Fernanda Ortis, Alessandra K Cardozo, Zeynep Dogusan, Daisy Flamez, Michael Boyce, Junying Yuan, Decio L Eizirik
Journal of Biological Chemistry 2007 February 9, 282 (6): 3989-97
17158450
Free fatty acids cause pancreatic beta-cell apoptosis and may contribute to beta-cell loss in type 2 diabetes via the induction of endoplasmic reticulum stress. Reductions in eukaryotic translation initiation factor (eIF) 2alpha phosphorylation trigger beta-cell failure and diabetes. Salubrinal selectively inhibits eIF2alpha dephosphorylation, protects other cells against endoplasmic reticulum stress-mediated apoptosis, and has been proposed as a beta-cell protector. Unexpectedly, salubrinal induced apoptosis in primary beta-cells, and it potentiated the deleterious effects of oleate and palmitate. Salubrinal induced a marked eIF2alpha phosphorylation and potentiated the inhibitory effects of free fatty acids on protein synthesis and insulin release. The synergistic activation of the PERK-eIF2alpha branch of the endoplasmic reticulum stress response, but not of the IRE1 and activating transcription factor-6 pathways, led to a marked induction of activating transcription factor-4 and the pro-apoptotic transcription factor CHOP. Our findings demonstrate that excessive eIF2alpha phosphorylation is poorly tolerated by beta-cells and exacerbates free fatty acid-induced apoptosis. This modifies the present paradigm regarding the beneficial role of eIF2alpha phosphorylation in beta-cells and must be taken into consideration when designing therapies to protect beta-cells in type 2 diabetes.
Full Text Links
Find Full Text Links for this Article
You are not logged in. Sign Up or Log In to join the discussion.