JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Evaluation of renal cell carcinoma vaccines targeting carbonic anhydrase IX using heat shock protein 110.

Carbonic anhydrase IX (CA9) is a renal cell carcinoma (RCC)-specific tumor protein that is targeted using heat shock protein 110 (hsp110). The chaperoning ability of hsp110 can be utilized to form a complex with CA9 (hsp110 + CA9) in vitro, which can be administered as a highly concentrated tumor vaccine. In a tumor prevention model, hsp110 + CA9 prevented the growth of RENCA tumors in BALB/c mice, and produced IFN-gamma response measured using ELISPOT and an antibody response measured using ELISA. To test a second vaccine strategy, hsp110 complexed to a previously described CA9 peptide prevented tumor growth and produced a very weak IFN-gamma response, but no antibody response. A plasmid vector containing grp170, a member of the hsp110 family, linked to CA9 did not produce an antitumor response and produced no IFN-gamma response or antibodies. In a model of metastatic RCC, RENCA cells were injected intradermally prior to vaccination. Hsp110 + CA9 decreased tumor growth compared to control vaccinations. These studies suggest that recombinant hsp110 complexed to CA9 should be evaluated for treatment of RCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app