JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Activation of the Fanconi anemia/BRCA pathway and recombination repair in the cellular response to solar ultraviolet light.

Cancer Research 2006 December 2
Recombination repair plays an important role in the processing of DNA double-strand breaks (DSB) and DNA cross-links, and has been suggested to be mediated by the activation of the Fanconi anemia (FA)/BRCA pathway. Unlike DNA damage generated by ionizing radiation or DNA cross-linking, UV light-induced DNA damage is not commonly thought to require recombination for processing, as UV light does not directly induce DSBs or DNA cross-links. To elucidate the role of recombination repair in the cellular response to UV, we studied the FA/BRCA pathway in primary skin cells exposed to solar-simulated light. UV-induced monoubiquitination of the FANCD2 protein and formation of FANCD2 nuclear foci confirmed the activation of the pathway by UV light. This was only observed when cells were irradiated during S phase and was not caused by directly UV-induced DSBs. UV-exposed cells did not exhibit FANCD2 nuclear foci once they entered mitosis or when growth-arrested. In addition, UV-induced nuclear foci of the recombination proteins, RAD51 and BRCA1, colocalized with FANCD2 foci. We suggest that in response to UV light, when nucleotide excision repair failed to repair, or when translesional DNA synthesis failed to bypass UV-induced DNA photoproducts, the FA/BRCA pathway mediates the recombination repair of replication forks stalled at DNA photoproducts as a third line of defense.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app