Protective effect of Didymocarpus pedicellata on ferric nitrilotriacetate (Fe-NTA) induced renal oxidative stress and hyperproliferative response

Gurpreet Kaur, Irshad A Lone, Mohammad Athar, M Sarwar Alam
Chemico-biological Interactions 2007 January 5, 165 (1): 33-44
Didymocarpus pedicellata R. Br. (Gesneriaceae) is widely used in traditional Indian medicines against renal afflictions. In the present study, we have revealed ethanolic extract of aerial parts of D. pedicellata to possess significant antioxidant activity and protect against ferric nitrilotriacetate (Fe-NTA) mediated renal oxidative stress, nephrotoxicity and tumor promotion response. D. pedicellata extract was found to possess a high content of total polyphenolics, exhibit potent reducing power and significantly scavenge free radicals including several reactive oxygen species (ROS) and reactive nitrogen species (RNS). The extract also significantly and dose-dependently protected against Fe-NTA plus H(2)O(2)-mediated damage to lipids and DNA. Protective efficacy of the extract was also tested in vivo against Fe-NTA mediated nephrotoxicity and tumor promotion response. Administration of Fe-NTA (9 mg/kg body weight, i.p.) to Swiss albino mice depleted renal glutathione content and activities of antioxidant and phase II metabolizing enzymes with concomitant induction of oxidative damage. Fe-NTA also incited hyperproliferation response elevating ornithine decarboxylase activity and [(3)H]-thymidine incorporation into DNA. Elevation in serum creatinine (SCr) and blood urea nitrogen (BUN), and histopathological changes were also evident and suggested Fe-NTA to afflict damage to kidney. Pretreatment of mice with D. pedicellata extract (100-200 mg/kg body weight) for 7 days not only restored antioxidant armory near normal values but also significantly protected against renal oxidative stress and damage restoring normal renal architecture and levels of renal damage markers, viz., BUN and SCr. The results of the present study indicate D. pedicellata to possess potent antioxidant and free radical scavenging activities and preclude oxidative damage and hyperproliferation in renal tissues.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"