Add like
Add dislike
Add to saved papers

En route to the formation of high-efficiency, osmium(II)-based phosphorescent materials.

Inorganic Chemistry 2006 December 12
Triosmium cluster complexes [Os3(CO)8(fppz)2] (2a) and [Os3(CO)8(fptz)2] (2b) bearing two 2-pyridyl azolate ligands were synthesized in an attempt to establish the reaction mechanism that gives rise to the blue-emitting phosphorescent complexes [Os(CO)2(fppz)2] (1a) and [Os(CO)2(fptz)2] (1b) [(fppz)H = 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole; (fptz)H = 3-(trifluoromethyl)-5-(2-pyridyl)triazole]. X-ray structural analysis of 2b showed an open triangular metal framework incorporating multisite-coordinated 2-pyridyltriazolate ligands. Treatment of 2 with the respective 2-pyridylazolate ligand led to the formation of blue-emitting complex 1b, confirming their intermediacy, while the reaction of 2b with phosphine ligand PPh2Me afforded two hitherto novel hydride complexes 3 and 4, for which the reversible interconversion was clearly established at higher temperatures (> 180 degrees C). The single-crystal X-ray diffraction analyses of 3 and 4 confirmed their monometallic and isomeric nature, together with the coordination of two phosphine ligands located in the trans-disposition and one CO and one hydride located opposite to the pyridyl triazolate chelate. Subtle differences in photophysical properties were examined for isomers 3 and 4 on the basis of steady state absorption and emission, the relaxation dynamics, and temperature-dependent luminescent studies. The results, in combination with time-dependent density function theory (TDDFT) calculations, provide fundamental insights into the future design and preparation of highly efficient phosphorescent emitters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app