Add like
Add dislike
Add to saved papers

Intestinal ribosomal p70(S6K) signaling is increased in piglet rotavirus enteritis.

Recent identification of the mammalian target of rapamycin (mTOR) pathway as an amino acid-sensing mechanism that regulates protein synthesis led us to investigate its role in rotavirus diarrhea. We hypothesized that malnutrition would reduce the jejunal protein synthetic rate and mTOR signaling via its target, ribosomal p70 S6 kinase (p70(S6K)). Newborn piglets were artificially fed from birth and infected with porcine rotavirus on day 5 of life. Study groups included infected (fully fed and 50% protein calorie malnourished) and noninfected fully fed controls. Initially, in "worst-case scenario studies," malnourished infected piglets were killed on days 1, 3, 5, and 11 postinoculation, and jejunal samples were compared with controls to determine the time course of injury and p70(S6K) activation. Using a 2 x 2 factorial design, we subsequently determined if infection and/or malnutrition affected mTOR activation on day 3. Western blot analysis and immunohistochemistry were used to measure total and phosphorylated p70(S6K); [(3)H]phenylalanine incorporation was used to measure protein synthesis; and lactase specific activity and villus-crypt dimensions were used to quantify injury. At the peak of diarrhea, the in vitro jejunal protein synthetic rate increased twofold (compared with the rate in the uninfected pig jejunum), concomitant with increased jejunal p70(S6K) phosphorylation (4-fold) and an increased p70(S6K) level (3-fold, P < 0.05). Malnutrition did not alter the magnitude of p70(S6K) activation. Immunolocalization revealed that infection produced a major induction of cytoplasmic p70(S6K) and nuclear phospho-p70(S6K), mainly in the crypt. A downregulation of semitendinosus muscle p70(S6K) phosphorylation was seen at days 1-3 postinoculation. In conclusion, intestinal activation of p70(S6K) was not inhibited by malnutrition but was strongly activated during an active state of mucosal regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app