Add like
Add dislike
Add to saved papers

Nucleus pulposus notochord cells secrete connective tissue growth factor and up-regulate proteoglycan expression by intervertebral disc chondrocytes.

OBJECTIVE: To identify the components of conditioned medium obtained from intervertebral disc nucleus pulposus-derived canine notochord cells, and to evaluate the capacity of such factors to affect disc-derived chondrocyte gene expression of aggrecan, versican, and hyaluronic acid synthase 2 (HAS-2) as a function of culture conditions.

METHODS: Canine notochord cells obtained from nonchondrodystrophic dogs were cultured within alginate beads under conditions of serum deficiency (Dulbecco's modified Eagle's medium [DMEM]) to produce notochord cell-conditioned medium (NCCM). NCCM was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectroscopy. Bovine disc-derived chondrocytes were cultured with serum-deficient medium (DMEM) and NCCM and assayed for the effect of tissue culture conditions on aggrecan, versican, and HAS-2 gene expression. Next, chondrocyte gene expression for aggrecan was evaluated using DMEM containing recombinant connective tissue growth factor (rCTGF), and the results compared with those obtained using NCCM and DMEM.

RESULTS: NCCM contained aggrecan, Cu/Zn superoxide dismutase, fibronectin, and CTGF precursor. Culture with NCCM caused an up-regulation of aggrecan, versican, and HAS-2 gene expression. NCCM induced aggrecan gene expression in chondrocytes at a level similar to that induced by 100-200 ng/ml rCTGF. Nonchondrodystrophic and chondrodystrophic canine notochord cells exhibited similar levels of CTGF gene expression.

CONCLUSION: Nucleus pulposus-derived notochord cells secrete CTGF (CCN2), a recently discovered multifunctional growth factor. There is no difference between CTGF gene expression in nonchondrodystrophic and chondrodystrophic canine notochord cells, suggesting a possible role of CTGF as an anabolic factor within the disc nucleus that is, to at least some degree, dependent on the population of notochord cells within the disc nucleus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app