Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Inhibition of mineral loss at the enamel/sealant interface of fissures sealed with fluoride- and non-fluoride containing dental materials in vitro.

OBJECTIVE: In this in vitro study we evaluated the enamel mineral loss effect of fluoride-containing and non-fluoride-containing materials at different distances from the sealant margin, and verified the fluoride-releasing capability of these materials.

MATERIAL AND METHODS: Extracted molars were randomly assigned into nine groups (n = 12): Concise (C), FluroShield (F), Helioseal Clear Chroma (H), Vitremer (V), Fuji II-LC (FII), Ketac Molar (KM), Fuji IX (FIX), Single Bond (SB), and Clearfil Protect Bond (CF). All groups were subjected to thermo and pH cycling. Enamel mineral loss was evaluated by cross-section micro-hardness analysis at distances: -100 microm, 0 microm, 100 microm, 200 microm. The mineral loss data were analyzed using a multi-factor ANOVA with split-plot design, and fluoride-released data were submitted to ANOVA and Tukey tests.

RESULTS: FIX demonstrated a lower mineral loss than C, F, and H, but did not differ from the SB, CF, V, FII, and KM groups, which also demonstrated no difference among them. C, F, H, and V presented the highest mineral loss, with no difference among them. V did not differ from the other groups (p > 0.05). Regarding the different distances from the sealant margin, -100 microm presented the lowest mineral loss. FIX showed the highest fluoride release on the 7th and 14th days of evaluation, while CF showed high fluoride release only on the 7th day.

CONCLUSION: Resin sealant did not prevent enamel mineral loss, contrary to glass-ionomer cement, which showed the highest capacity for fluoride release. It is not exclusively the presence of fluoride in a material's composition that indicates its capability to interfere with the development of enamel caries-like lesions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app