COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice.

To explore further the role of the vitamin D axis for fibroblast growth factor-23 (FGF23) signaling, we mated Fgf-23 deficient (Fgf-23(-/-)) mice and vitamin D receptor (VDR) mutant mice with a non-functioning VDR. To prevent secondary hyperparathyroidism in VDR and compound mutant mice, all mice were kept on a rescue diet enriched with calcium, phosphorus, and lactose. Consistent with previous findings, Fgf-23(-/-) animals showed hypercalcemia, hyperphosphatemia, growth retardation, ectopic calcifications, severe osteoidosis, skin atrophy, and renal dysfunction. In addition, here we describe that Fgf-23(-/-) mice are hypoglycemic, and have profoundly increased peripheral insulin sensitivity and improved subcutaneous glucose tolerance, but normal renal expression of the aging suppressor gene Klotho. Although VDR and double mutants on the rescue diet still had moderately elevated parathyroid hormone serum levels and lower bone mineral density compared to wild-type mice, double mutant mice were normocalcemic and normophosphatemic, and had normal body weight, normal renal function, and no ectopic calcifications. Ablation of vitamin D signaling in compound mutants also normalized subcutaneous glucose tolerance tests and insulin secretory response. In conclusion, our results indicate that the alterations in mineral and carbohydrate metabolism present in Fgf-23(-/-) mice require an intact vitamin D signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app