Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Serial diffusion tensor MRI after transient and permanent cerebral ischemia in nonhuman primates.

BACKGROUND AND PURPOSE: We measured the temporal evolution of the T2 and diffusion tensor imaging parameters after transient and permanent cerebral middle cerebral artery occlusion (MCAo) in macaques, and compared it to standard histological analysis at the study end point.

METHODS: Stroke was created in adult male macaques by occluding a middle cerebral artery branch for 3 hours (transient MCAo, n=4 or permanent occlusion, n=3). Conventional MRI and diffusion tensor imaging scans were performed 0 (acute day), 1, 3, 7, 10, 17, and 30 days after MCAo. Animals were euthanized after the final scan and the brains removed for histological analysis.

RESULTS: Apparent diffusion coefficient in the lesion was decreased acutely, fractional anisotropy was elevated, and T2 remained normal. Thereafter, apparent diffusion coefficient increased above normal, fractional anisotropy decreased to below normal, T2 increased to a maximum and then declined. Reperfusion at 3 hours accelerated these MRI changes. Only the fractional anisotropy value was significantly different between transient and permanent groups at 30 days. Final MRI-defined fractional lesion volumes were well correlated with corresponding histological lesion volumes. Permanent MCAO animals showed more severe histological damage than their transient MCAO counterparts, especially myelin damage and axonal swelling.

CONCLUSIONS: Overall, the MRI evolution of stroke in macaques was closer to what has been observed in humans than in rodent models. This work supports the use of serial MRI in stroke studies in nonhuman primates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app