JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inverted factor access and slow reversion characterize SWI/SNF-altered nucleosome dimers.

Human SWI/SNF (hSWI/SNF) is an ATP-dependent chromatin remodeling complex with important functions in activation and repression of cellular genes. Previously, we showed that hSWI/SNF creates structurally altered dimers from mononucleosome cores. More recently we found that hSWI/SNF also generates abundant structurally altered dinucleosomes, called altosomes, on polynucleosomal templates. Here, we find that dimers revert to normal nucleosomes at a similar rate as altosomes and can also be cleaved to yield nucleosomal particles with mobilities similar to mononucleosomes. Using these and other shared properties we propose a single model for both types of hSWI/SNF product. In addition, we further characterize the accessibility of altered dimers to transcription factors, and find that the DNA in dimers is most accessible in the middle and least accessible at the ends, directly opposite the profile of normal mononucleosomes. We also find that transcription factor binding can influence the ratio of normal nucleosomes and dimers as hSWI/SNF products. Implications for the interplay between hSWI/SNF products and transcription factors are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app