JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Optimizing viral and non-viral gene transfer methods for genetic modification of porcine mesenchymal stem cells.

INTRODUCTION: Mesenchymal stem cells (MSCs) provide an excellent source of pluripotent progenitor cells for tissue-engineering applications due to their proliferation capacity and differentiation potential. Genetic modification of MSCs with genes encoding tissue-specific growth factors and cytokines can induce and maintain lineage-specific differentiation. Due to anatomical and physiological similarities to humans, porcine research models have been proven valuable for the preclinical testing of tissue engineering protocols in large animals. The aim of this study was to evaluate optimized viral and non-viral ex vivo gene delivery systems with respect to gene transfer efficiency, maintenance of transgene expression, and safety issues using primary porcine MSCs as target cells.

MATERIALS AND METHODS: MSCs were purified from bone marrow aspirates from the proximal tibiae of four 3-month-old Danish landrace pigs by Ficoll step gradient separation and polystyrene adherence technique. Vectors expressing enhanced green fluorescent protein (eGFP) and human bone morphogenetic protein-2 (BMP-2) were transferred to the cells by different non-viral methods and by use of recombinant adeno-associated virus (rAAV)-mediated and retroviral gene delivery. Each method for gene delivery was optimized. Gene transfer efficiency was compared on the basis of eGFP expression as assessed by fluorescence microscopy and fluorescence-activated flow cytometry. BMP-2 gene expression and osteogenic differentiation were evaluated by realtime quantitative RT-PCR and histochemical detection of alkaline phosphatase activity, respectively.

RESULTS: Non-viral gene delivery methods resulted in transient eGFP expression by less than 2% of the cells. Using high titer rAAV-based vector up to 90% of the cells were transiently transduced. The efficiency of rAAV-mediated gene delivery was proportional to the rAAV vector titer applied. Retroviral gene delivery resulted in long-term transgene expression of porcine MSCs. A 26-fold increase in percentage of eGFP expressing cells (1.7%+/-0.2% versus 44.1% +/-5.0%, mean +/-SD) and a 68-fold increase in mean fluorescence intensity (327.4+/-56.6 versus 4.8+/-1.3) was observed by centrifugation of retroviral particles onto the target cell layer. Porcine MSCs that were BMP-2 transduced by optimized retroviral gene delivery demonstrated a significant increase in BMP-2 gene expression and showed increased osteogenic differentiation. Retrovirally transduced porcine MSCs were furthermore tested free of replication-competent viruses.

DISCUSSION: The non-viral gene transfer methods applied were significantly less efficient compared to the viral methods tested. However, due to advantages with respect to safety issues and ease of handling, improvement of non-viral gene delivery to primary MSCs deserves further attention. The high efficiency of rAAV-mediated gene delivery observed at high titers can be explained by the ability of rAAV vector to transduce nondividing cells and by its tropism towards porcine MSCs. rAAV-mediated gene delivery resulted in transient transgene expression due to lack of stable AAV genome integration. MLV-mediated retroviral gene delivery can be considered a safe method for long-term transgene expression by porcine MSCs, and is therefore particularly attractive for advanced tissue engineering strategies requiring extended transgene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app