Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A rapid, simple, specific liquid chromatographic-electrospray mass spectrometry method for the determination of finasteride in human plasma and its application to pharmacokinetic study.

A fast, accurate, sensitive, selective and reliable method using reversed-phase high-performance liquid chromatography-mass spectrometry coupling with an electrospray ionization interface was developed and validated for the determination of finasteride in human plasma. After deprotienation with acetonitrile, centrifugation, evaporation to dryness and dissolving in mobile phase, satisfactory separation was achieved on a Hypersil-Keystone C(18) reversed-phase column using a mobile phase consisting of acetonitrile-water (46:54, v/v), 0.1% acetic acid and 0.1% trifluoracetic acid. Carbamazepine (IS) was used as internal standard. This method involved the use of the [M+H](+) ions of finasteride and IS at m/z 373 and 237 with the selective ion monitoring (SIM) mode. The calibration curve was linear in the range of 0.2-120 ng ml(-1). The limit of quantification for finasteride in plasma was 0.2 ng ml(-1) with good accuracy and precision. The intra-assay precision and accuracy were in the range of 2.1-11.2% and -1.3% to 8.5%, respectively. The inter-assay precision and accuracy were in the order of 3.4-12.1% and -1.5% to 11.5%, respectively. The mean sample extract recoveries of the method were higher than 85% and 74% for finasteride and internal standard (IS), respectively. The assay has been successfully used to estimate the pharmacokinetics of finasteride after oral administration of a 5mg tablet of finasteride to 24 healthy volunteers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app