Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Photocatalytic performance of Sn-doped TiO2 nanostructured mono and double layer thin films for Malachite Green dye degradation under UV and vis-lights.

Nanostructure Sn(4+)-doped TiO(2) based mono and double layer thin films, contain 50% solid ratio of TiO(2) in coating have been prepared on glass surfaces by spin-coating technique. Their photocatalytic performances were tested for degradation of Malachite Green dye in solution under UV and vis irradiation. Sn(4+)-doped nano-TiO(2) particle a doping ratio of about 5[Sn(4+)/Ti(OBu(n))(4); mol/mol%] has been synthesized by hydrotermal process at 225 degrees C. The structure, surface and optical properties of the thin films and/or the particles have been investigated by XRD, BET and UV/vis/NIR techniques. The results showed that the double layer coated glass surfaces have a very high photocatalytic performance than the other one under UV and vis lights. The results also proved that the hydrothermally synthesized nano-TiO(2) particles are fully anatase crystalline form and are easily dispersed in water. The results also reveal that the coated surfaces have hydrophilic property.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app