JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Protein complex expression by using multigene baculoviral vectors.

Nature Methods 2006 December
Elucidation of the molecular basis of protein-interaction networks, in particular in higher eukaryotes, is hampered by insufficient quantities of endogenous multiprotein complexes. Present recombinant expression methods often require considerable investment in both labor and materials before multiprotein expression, and after expression and biochemical analysis these methods do not provide flexibility for expressing an altered multiprotein complex. To meet these demands, we have recently introduced MultiBac, a modular baculovirus-based system specifically designed for eukaryotic multiprotein expression. Here we describe new transfer vectors and a combination of DNA recombination-based methods, which further facilitate the generation of multigene cassettes for protein coexpression (Fig. 1), thus providing a flexible platform for generation of protein expression vectors and their rapid regeneration for revised expression studies. Genes encoding components of a multiprotein complex are inserted into a suite of compatible transfer vectors by homologous recombination. These progenitor constructs are then rapidly joined in the desired combination by Cre-loxP-mediated in vitro plasmid fusion. Protocols for integration of the resulting multigene expression cassettes into the MultiBac baculoviral genome are provided that rely on Tn7 transposition and/or Cre-loxP reaction carried out in vivo in Escherichia coli cells tailored for this purpose. Detailed guidelines for multigene virus generation and amplification, cell culture maintenance and protein production are provided, together with data illustrating the simplicity and remarkable robustness of the present method for multiprotein expression using a composite MultiBac baculoviral vector.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app