JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A regulatory CD4+ T cell subset in the BB rat model of autoimmune diabetes expresses neither CD25 nor Foxp3.

Journal of Immunology 2006 December 2
Biobreeding (BB) rats model type 1 autoimmune diabetes (T1D). BB diabetes-prone (BBDP) rats develop T1D spontaneously. BB diabetes-resistant (BBDR) rats develop T1D after immunological perturbations that include regulatory T cell (Treg) depletion plus administration of low doses of a TLR ligand, polyinosinic-polycytidylic acid. Using both models, we analyzed CD4+CD25+ and CD4+CD45RC- candidate rat Treg populations. In BBDR and control Wistar Furth rats, CD25+ T cells comprised 5-8% of CD4+ T cells. In vitro, rat CD4+CD25+ T cells were hyporesponsive and suppressed T cell proliferation in the absence of TGF-beta and IL-10, suggesting that they are natural Tregs. In contrast, CD4+CD45RC(-) T cells proliferated in vitro in response to mitogen and were not suppressive. Adoptive transfer of purified CD4+CD25+ BBDR T cells to prediabetic BBDP rats prevented diabetes in 80% of recipients. Surprisingly, CD4+CD45RC-CD25- T cells were equally protective. Quantitative studies in an adoptive cotransfer model confirmed the protective capability of both cell populations, but the latter was less potent on a per cell basis. The disease-suppressing CD4+CD45RC-CD25- population expressed PD-1 but not Foxp3, which was confined to CD4+CD25+ cells. We conclude that CD4+CD25+ cells in the BBDR rat act in vitro and in vivo as natural Tregs. In addition, another population that is CD4+CD45RC-CD25- also participates in the regulation of autoimmune diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app