Add like
Add dislike
Add to saved papers

Involvement of mitochondria and caspase pathways in N-demethyl-clarithromycin-induced apoptosis in human cervical cancer HeLa cell.

AIM: To study the mechanisms by which N-demethyl-clarithromycin (NDC) induces human cervical cancer HeLa cell apoptosis in vitro.

METHODS: The viability of N-demethyl-clarithromycin-induced HeLa cells was measured by MTT assay. Apoptotic cells with condensed nuclei were visualized by phase contrast microscopy. Nucleosomal DNA fragmentation was assayed by agarose gel electrophoresis. Measurement of mitochondrial transmembrane potential was analyzed by a FACScan flowcytometer. Caspase-3, poly-(ADP-ribose) polymerase (PARP), caspase-activated DNase (ICAD), Bcl-2, Bax, p53, and SIRT1 protein expression and the release of cytochrome c were detected by Western blot analysis.

RESULTS: N-demethyl-clarithromycin, an anti-inflammatory substance, inhibited HeLa cell growth in a dose- and time-dependent manner. N-demethyl-clarithro-mycin induced HeLa cell death through the apoptotic pathways. The pan-caspase inhibitor (z-VAD-fmk), caspase-3 inhibitor (z-DEVD-fmk) and the caspase-9 inhibitor (z-LEHD-fmk) partially enhanced cell viability induced by N-demethyl-clarithromycin, but the caspase-8 inhibitor (z-IETD-fmk) had almost no effect. Caspase-3 was activated then followed by the degradation of caspase-3 substrates, the inhibitor of ICAD and PARP. Simultaneously, mitochondrial transmembrane potential was markedly reduced and the release of cytochrome c in the cytosol was increased. N-demethyl-clarithromycin upregulated the expression ratio of mitochondrial Bax/Bcl-2, and significantly increased the expression of the p53 protein. It also downregulated anti-apoptotic protein SIRT1 expression.

CONCLUSION: N-demethyl-clarithromycin induced apoptosis in HeLa cells via the mitochondrial pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app