Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Green tea polyphenol epigallocatechin-3-gallate suppresses rat hepatic stellate cell invasion by inhibition of MMP-2 expression and its activation.

AIM: Epigallocatechin-3-gallate (EGCG) is the major component of green tea polyphenols, whose wide range of biological properties includes anti-fibrogenic activity. Matrix metalloproteinases (MMP) that participate in extracellular matrix degradation are involved in the development of hepatic fibrosis. The present study investigates whether EGCG inhibits activation of the major gelatinase matrix metalloproteinase-2 (MMP-2) in rat hepatic stellate cells (HSC).

METHODS: The expression of MMP-2, tissue inhibitors of metalloproteinases-2 (TIMP-2), and membrane-type 1-MMP (MT1-MMP) was assessed by RT-PCR and Western blot analyses. MMP-2 activity was evaluated by zymography and MT1-MMP activity was assessed by an enzymatic assay. HSC migration was measured by a wound healing assay and cell invasion was performed using Transwell cell culture chambers.

RESULTS: The expression of MMP-2 mRNA and protein in HSC was substantially reduced by EGCG treatment. EGCG treatment also reduced concanavalin A (ConA)-induced activation of secreted MMP-2 and reduced MT1-MMP activity in a dose-dependent manner. In addition, EGCG inhibited either HSC migration or invasion.

CONCLUSION: The abilities of EGCG to suppress MMP-2 activation and HSC invasiveness suggest that EGCG may be useful in the treatment and prevention of hepatic fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app