Sloppy paired 1/2 regulate glial cell fates by inhibiting Gcm function

Soma Mondal, Stacey M Ivanchuk, James T Rutka, Gabrielle L Boulianne
Glia 2007, 55 (3): 282-93
Organization of the central nervous system during embryonic development is an intricate process involving a host of molecular players. The Drosophila segmentation genes, sloppy paired (slp) 1/2 have been shown to be necessary for development of a neuronal precursor cell subtype, the NB4-2 cells. Here, we show that slp1/2 also have roles in regulating glial cell fates. Using slp1/2 loss-of-function mutants, we show an increase in glial cell markers, glial cells missing (gcm) and reversed polarity. In contrast, misexpression of either slp1 or slp2 causes downregulation of glial cell-specific genes and alters the fate of glial and neuronal cells. Furthermore, we demonstrate that Slp1 and its mammalian ortholog, Foxg1, inhibit Gcm transcriptional activity as well as bind Gcm. Taken together, these data show that Slp1/Foxg1 regulate glial cell fates by inhibiting Gcm function.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"