JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Downregulation of cyclooxygenase-2 expression and activation of caspase-3 are involved in peroxisome proliferator-activated receptor-gamma agonists induced apoptosis in human monocyte leukemia cells in vitro.

Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a transcription factor important in fat metabolism and PPAR-gamma agonists were recently demonstrated to affect proliferation, differentiation, and apoptosis of different cell types. In the present study, two PPAR-gamma agonists, 15-deoxy-delta (12,14)-prostaglandin J2 (15d-PGJ2) and a synthetic PPAR-gamma agonist troglitazone (TGZ), were used to investigate activated PPAR-gamma-induced apoptosis on human monocyte leukemia U937 and Mono Mac 6 cells in vitro. The results showed that both U937 and Mono Mac 6 cells demonstrated constitutive activation of COX-2 expression; treatment by 15d-PGJ2 and TGZ could induce apoptosis remarkably in human monocyte leukemia cells by disruption of mitochondrial membrane potential, activation of caspase-3, and causing cleavage of the caspase substrate poly (ADP-ribose) polymerase (PARP). Further studies revealed that treatment by both 15d-PGJ2 and TGZ remarkably downregulated COX-2 expression in these two kind of monocyte leukemia cells as measured by reverse transcriptase PCR (RT-PCR) and Western blot. Furthermore, the expression of Bcl-2 and Bcl-Xl and Mcl-1 was downregulated while Bax expression was upregulated concurrently after the cells were treated by these two agonists, and no variations were found in other Bcl-2 family members such as Bak, Bid, and Bad. Taken together, our results demonstrate for the first time that downregulation of cyclooxygenase-2 expression, disruption of mitochondrial membrane potential, activation of caspase-3, downregulation of Bcl-2, Bcl-Xl, and Mcl-1, and upregulation of Bax are involved in PPAR-gamma agonists-induced apoptosis in these two human monocyte leukemia cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app