JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Enhancing cisplatin sensitivity in MCF-7 human breast cancer cells by down-regulation of Bcl-2 and cyclin D1.

MCF-7 human breast cancer cells are relatively resistant to cisplatin treatment compared to other breast cancer cell lines. In order to identify possible targets for sensitizing the breast cancer cells to cisplatin treatment protein expression levels and the phosphorylation status of 27 different signaling proteins were examined. MCF-7 cells expressed high levels of anti-apoptotic Bcl-2 protein relative to more cisplatin sensitive breast cancer cells. After cisplatin treatment a decrease in cyclin D1 was seen in all the breast cancer cells studied. Therefore, Bcl-2 and cyclin D1 were chosen as putative targets for increasing cell death and growth arrest induced by cisplatin, thereby enhancing the drug sensitivity in MCF-7. RNA interference, using Bcl-2- and cyclin D1- siRNAs sensitized MCF-7 cells to cisplatin treatment and by simultaneous knockdown of both Bcl-2 and cyclin D1 further sensitization was seen. This shows the potential of targeting both apoptotic- and cell cycle-regulating pathways to enhance the effect of chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app