JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pituitary-interrenal interaction in zebrafish interrenal organ development.

To further elucidate pituitary adrenal interactions during development, we studied the organogenesis of the interrenal organ, the teleost homolog of the mammalian adrenal gland, in zebrafish. To this end we compared wild-type zebrafish interrenal development with that of mutants lacking pituitary cell types including corticotrophs. In addition, we studied the effects of ACTH receptor (Mc2r) knockdown and dexamethasone (dex) on interrenal development and pituitary feedback. Until 2 d post fertilization (2 dpf) interrenal development assessed by transcripts of key steroidogenic genes (cyp11a1, mc2r, star) is independent of proopiomelanocortin (Pomc) as demonstrated in aal/eya1and lia/fgf3 mutants. However, at 5 dpf lack of pituitary cells leads to reduced expression of steroidogenic genes at both the transcriptional and the protein level. Pituitary control of interrenal development resides in corticotrophs, because pit1 mutants lacking pituitary cells except corticotrophs have a phenotype similar to that of wild-type controls. Furthermore, development in mc2r knockdown morphants does not differ from aal/eya1 and lia/fgf3 mutants. Inhibition of steroidogenesis by mc2r knockdown induces up-regulation of pomc expression in the anterior domain of pituitary corticotrophs. Accordingly, dex suppresses pomc in the anterior domain only, leading to impaired expression of steroidogenic genes commencing at 3 dpf and interrenal hypoplasia via reduced interrenal proliferation. In contrast, negative feedback on pituitary corticotrophs by dex is evident at 2 dpf and precedes effects of Pomc on the interrenal primordium. These data demonstrate a gradual transition from early pituitary-independent interrenal organogenesis to developmental control by the anterior domain of pituitary corticotrophs acting via Mc2 receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app