Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

EGCG mitigates neurotoxicity mediated by HIV-1 proteins gp120 and Tat in the presence of IFN-gamma: role of JAK/STAT1 signaling and implications for HIV-associated dementia.

Brain Research 2006 December 7
Human immunodeficiency virus (HIV)-1 infection of the central nervous system occurs in the vast majority of HIV-infected patients. HIV-associated dementia (HAD) represents the most severe form of HIV-related neuropsychiatric impairment and is associated with neuropathology involving HIV proteins and activation of proinflammatory cytokine circuits. Interferon-gamma (IFN-gamma) activates the JAK/STAT1 pathway, a key regulator of inflammatory and apoptotic signaling, and is elevated in HIV-1-infected brains progressing to HAD. Recent reports suggest green tea-derived (-)-epigallocatechin-3-gallate (EGCG) can attenuate neuronal damage mediated by this pathway in conditions such as brain ischemia. In order to investigate the therapeutic potential of EGCG to mitigate the neuronal damage characteristic of HAD, IFN-gamma was evaluated for its ability to enhance well-known neurotoxic properties of HIV-1 proteins gp120 and Tat in primary neurons and mice. Indeed, IFN-gamma enhanced the neurotoxicity of gp120 and Tat via increased JAK/STAT signaling. Additionally, primary neurons pretreated with a JAK1 inhibitor, or those derived from STAT1-deficient mice, were largely resistant to the IFN-gamma-enhanced neurotoxicity of gp120 and Tat. Moreover, EGCG treatment of primary neurons from normal mice reduced IFN-gamma-enhanced neurotoxicity of gp120 and Tat by inhibiting JAK/STAT1 pathway activation. EGCG was also found to mitigate the neurotoxic properties of HIV-1 proteins in the presence of IFN-gamma in vivo. Taken together, these data suggest EGCG attenuates the neurotoxicity of IFN-gamma augmented neuronal damage from HIV-1 proteins gp120 and Tat both in vitro and in vivo. Thus EGCG may represent a novel natural copound for the prevention and treatment of HAD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app