JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Evidence for impaired gluconeogenesis in very long-chain acyl-CoA dehydrogenase-deficient mice.

Hypoketotic hypoglycaemia is a characteristic feature of fatty acid oxidation (FAO) defects. Although the underlying pathogenic mechanism is unknown, one hypothesis points to an impairment in gluconeogenesis. To study hepatic glucose production in FAO defects, we used the knockout mouse model of very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency presenting with stress-induced hypoglycaemia. We analysed metabolites of hepatic glucose production under non-stressed conditions and after stress in comparison to wildtype controls. Analysis included glycogen, glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), glycerol-3-phosphate (G3P) and dihydroxyacetone-phosphate (DHAP). We also measured the activity of the key enzyme glucose-6-phosphatase. Blood and liver glucose were found to be low after stress, and liver glycogen was depleted. In addition, hepatic G6P and F6P were significantly reduced, especially during hypoglycaemia. Importantly, the activity of the enzyme converting G6P into glucose was not impaired. These data indicate a reduced rate of gluconeogenesis. The levels of DHAP and G3P were significantly lower suggesting decreased availability of glucose precursors from glycerol. This study gives biochemical evidence of impaired gluconeogenesis as one of the causes for hypoglycaemia observed in VLCAD deficiency. Whether this is due to lack of a substrate, inhibitory effects on other gluconeogenic enzymes or impaired transcription of gluconeogenic enzymes needs to be resolved in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app