Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Protein kinase A exhibits selective modulation of estradiol-dependent transcription in breast cancer cells that is associated with decreased ligand binding, altered estrogen receptor alpha promoter interaction, and changes in receptor phosphorylation.

Inhibition of protein kinase A (PKA) promotes estrogen-dependent growth of MCF7 breast cancer cells, although the mechanisms by which PKA regulates estrogen receptor (ER) function remain unclear. In this study elevation of cAMP by forskolin/3-isobutyl-1-methylxanthine (F/I) suppressed estradiol-dependent MCF7 and T47D breast cancer cell growth but not tamoxifen-resistant MCF7-LCC2 cells. Although F/I induced ligand independent activation of ERalpha, F/I also decreased estradiol-dependent reporter gene transcription. Overexpression of PKA or PKA inhibitor (PKI) demonstrated that F/I effects on repression of estradiol action occurred through the PKA pathway. 8CPT-2Me-cAMP, a selective inducer of non-PKA signaling, did not alter ER-dependent transcription. In contrast to F/I effects on reporter genes, F/I exhibited gene-specific effects on endogenous, ER-regulated genes. F/I enhanced estradiol induction of pS2 and cMyc but repressed estradiol induction of cyclin D1 mRNA and protein in MCF7 cells. To explore likely mechanisms by which F/I regulated ER, experiments examined estradiol binding, Hsp90 interaction, promoter recruitment, and ERalpha phosphorylation. F/I decreased estradiol binding and increased Hsp90 association with ERalpha. Chromatin immunoprecipitation revealed that F/I recruited ERalpha to both pS2 and cMyc promoters at earlier times than estradiol, and F/I shifted estradiol recruitment of ERalpha to earlier time points. F/I induced a unique ERalpha phosphorylation profile (increase in serine 305 and decrease in serine 118 phosphorylation) that was distinct from estradiol and estradiol + F/I. Taken together, F/I signaling through PKA selectively regulates estradiol-dependent genes in breast cancer, which is associated with reduced ligand binding and changes in promoter interaction and ERalpha phosphorylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app