Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Evaluation of the extracellular and intracellular activities (human THP-1 macrophages) of telavancin versus vancomycin against methicillin-susceptible, methicillin-resistant, vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus.

OBJECTIVES: To compare extracellular and intracellular activities of telavancin (versus vancomycin) against Staphylococcus aureus (MSSA, MRSA, VISA and VRSA).

METHODS: Determination of cfu changes (3-24 h) in culture medium and in macrophages at concentrations ranging from 0.01 to 1000x MIC.

RESULTS: Extracellularly, telavancin displayed a fast, concentration-dependent bactericidal activity against all strains. The concentration-effect relationship was bimodal for MSSA and MRSA [two successive sharp drops in bacterial counts (0.3-1x MIC and 100-1000x MIC) separated by a zone of low concentration dependency]. When compared at human total drug Cmax (vancomycin, 50 mg/L; telavancin, 90 mg/L) towards MSSA, MRSA and VISA, telavancin caused both a faster and more marked decrease of cfu, with the limit of detection (>5 log decrease) reached already at 6 versus 24 h for vancomycin. Intracellularly, the bactericidal activity of telavancin was less intense [-3 log (MSSA) to -1.5 log (VRSA) at Cmax and at 24 h]. A bimodal relationship with respect to concentration (at 24 h) was observed for both MSSA and MRSA. In contrast, vancomycin exhibited only marginal intracellular activity towards intraphagocytic MSSA, MRSA and VISA (max. -0.5 log decrease at 24 h and at Cmax).

CONCLUSIONS: Telavancin showed time- and concentration-dependent bactericidal activity against both extracellular and intracellular S. aureus with various resistance phenotypes. The data support the use of telavancin in infections where intracellular and extracellular S. aureus are present. Bimodality of dose responses (MSSA and MRSA) could indicate multiple mechanisms of action for telavancin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app