JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study.

Neural stem cells (NSCs) exist in vascularized niches. Although there has been ample evidence supporting a role for endothelial cell-derived soluble factors as modulators of neural stem cell self-renewal and neuronal differentiation there is a paucity of data reported on neural stem cell modulation of endothelial cell behavior. We show that co-culture of NSCs with brain-derived endothelial cells (BECs) either in direct contact or separated by a porous membrane elicited robust vascular tube formation and maintenance, mediated by induction of vascular vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) and activation of vascular VEGFR2 and TrkB by NSC NO. Nitric oxide (NO) scavengers and sequestration of VEGF and BDNF blunted this induction of tube formation, whereas addition of exogenous NO donor, rBDNF and rVEGF rescued the induction of tube formation. Further, rBDNF enhanced NSC eNOS activation and NO generation, suggesting an inducible positive feed-back signaling loop between NSCs and BECs, providing for homeostasis and responsiveness of the resident NSCs and BECs comprising the neurovascular niche. These findings show the importance of reciprocal modulation of NSCs and BECs in induction and maintenance of the neurovascular niche and underscores their dynamic interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app