Add like
Add dislike
Add to saved papers

A free-energy landscape picture and Landau theory for the dynamics of disordered materials.

Landau's theory of phase transitions [Nature (London) 138, 840 (1936); Statistical Physics (Pergamon, London, 1959)] is adapted to treat independently relaxing regions in complex systems using nanothermodynamics. The order parameter we use governs the thermal fluctuations, not a specific static structure. We find that the entropy term dominates the thermal behavior, as is reasonable for disordered systems. Consequently, the thermal equilibrium occurs at the internal-energy maximum, so that the potential-energy minima have negligible influence on the dynamics. The dynamics involves normal thermal fluctuations about the free-energy minimum, with a time scale that is governed by the curvature of the internal-energy maximum. The temperature dependence of the fluctuations yields Vogel-Tamman-Fulcher-type [Phys. Z. 22, 645 (1921); J. Am. Ceram. Soc. 8, 339 (1925); Z. Anorg. Allg. Chem. 156, 245 (1926)] relaxation rates and approximate time-temperature superposition, consistent with the Williams-Landell-Ferry [J. Am. Chem. Soc. 77, 3701 (1955)] procedure for analyzing the dynamics of complex fluids, while the size dependence of the fluctuations provides an explanation for the distribution of relaxation times and heterogeneity that are found in glass-forming liquids, thus providing a unified picture for several features in the dynamics of disordered materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app