Add like
Add dislike
Add to saved papers

Disrupted barrier function through epithelial cell apoptosis.

Epithelial barrier function is determined by trans- and paracellular permeabilities, the latter of which is mainly influenced by tight junctions (TJs) and apoptotic leaks within the epithelium. The present article aims to present experimental evidence for a functional role of epithelial apoptoses by means of cell culture models as well as in tissues from patients with inflammatory bowel disease. It is shown that epithelial apoptoses are sites of elevated conductance within the intestinal epithelium and that proinflammatory cytokines like TNF-alpha upregulate both the apoptotic rate and single apoptotic conductivity, making cytokine-induced apoptosis functionally far more relevant than is spontaneous apoptosis. In ulcerative colitis and Crohn's disease (CD), but not in collagenous colitis, apoptotic rates are increased to about 5%, in mild-to-moderately inflamed colon specimens, where as the control apoptotic rate is about 2%. Thus, epithelial apoptoses lead to a loss of ions and water into the intestinal lumen, causing leak flux diarrhea and enabling small antigens of <4,000 Da in the intestinal lumen to enter the intestinal mucosa, thereby perpetuating inflammatory responses. In addition to TNF-alpha, interleukin (IL)-13 is an important inductor of epithelial apoptosis in Th2 immune responses. Therapeutically,TNF-alpha-antibodies (infliximab) can restore barrier function in Crohn's disease by downregulating epithelial apoptoses, while epithelial TJs are unaffected.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app