Add like
Add dislike
Add to saved papers

A numerical simulation of tooth movement by wire bending.

INTRODUCTION: In orthodontic treatment, wires are bent and attached to teeth to move them via elastic recovery. To predict how a tooth will move, the initial force system produced from the wire is calculated. However, the initial force system changes as the tooth moves and may not be used to predict the final tooth position. The purpose of this study was to develop a comprehensive mechanical, 3-dimensional, numerical model for predicting tooth movement.

METHODS: Tooth movements produced by wire bending were simulated numerically. The teeth moved as a result of bone remodeling, which occurs in proportion to stress in the periodontal ligament.

RESULTS: With an off-center bend, a tooth near the bending position was subjected to a large moment and tipped more noticeably than the other teeth. Also, a tooth far from the bending position moved slightly in the mesial or the distal direction. With the center V-bend, when the second molar was added as an anchor tooth, the tipping angle and the intrusion of the canine increased, and movement of the first molar was prevented. When a wire with an inverse curve of Spee was placed in the mandibular arch, the calculated tendency of vertical tooth movements was the same as the measured result. In these tooth movements, the initial force system changed as the teeth moved. Tooth movement was influenced by the size of the root surface area.

CONCLUSIONS: Tooth movements produced by wire bending could be estimated. It was difficult to predict final tooth positions from the initial force system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app