JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage.

Journal of Cell Science 2006 October 16
Class II histone deacetylases (HDAC4, HDAC5, HDAC7 and HDAC9) have been shown to interact with myocyte enhancer factors 2 (MEF2s) and play an important role in the repression of cardiac hypertrophy. We examined the role of HDACs during the differentiation of P19 embryonic carcinoma stem cells into cardiomyocytes. Treatment of aggregated P19 cells with the HDAC inhibitor trichostatin A induced the entry of mesodermal cells into the cardiac muscle lineage, shown by the upregulation of transcripts Nkx2-5, MEF2C, GATA4 and cardiac alpha-actin. Furthermore, the overexpression of HDAC4 inhibited cardiomyogenesis, shown by the downregulation of cardiac muscle gene expression. Class II HDAC activity is inhibited through phosphorylation by Ca2+/calmodulin-dependent kinase (CaMK). Expression of an activated CaMKIV in P19 cells upregulated the expression of Nkx2-5, GATA4 and MEF2C, enhanced cardiac muscle development, and activated a MEF2-responsive promoter. Moreover, inhibition of CaMK signaling downregulated GATA4 expression. Finally, P19 cells constitutively expressing a dominant-negative form of MEF2C, capable of binding class II HDACs, underwent cardiomyogenesis more efficiently than control cells, implying the relief of an inhibitor. Our results suggest that HDAC activity regulates the specification of mesoderm cells into cardiomyoblasts by inhibiting the expression of GATA4 and Nkx2-5 in a stem cell model system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app