Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme

Min-Soeng Kim, Chang-Hyun Kim, Ju-Jang Lee
IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics 2006, 36 (5): 1006-23
Developing Takagi-Sugeno fuzzy models by evolutionary algorithms mainly requires three factors: an encoding scheme, an evaluation method, and appropriate evolutionary operations. At the same time, these three factors should be designed so that they can consider three important aspects of fuzzy modeling: modeling accuracy, compactness, and interpretability. This paper proposes a new evolutionary algorithm that fulfills such requirements and solves fuzzy modeling problems. Two major ideas proposed in this paper lie in a new encoding scheme and a new fitness function, respectively. The proposed encoding scheme consists of three chromosomes, one of which uses unique chained possibilistic representation of rule structure. The proposed encoding scheme can achieve simultaneous optimization of parameters of antecedent membership functions and rule structures with the new fitness function developed in this paper. The proposed fitness function consists of five functions that consider three evaluation criteria in fuzzy modeling problems. The proposed fitness function guides evolutionary search direction so that the proposed algorithm can find more accurate compact fuzzy models with interpretable antecedent membership functions. Several evolutionary operators that are appropriate for the proposed encoding scheme are carefully designed. Simulation results on three modeling problems show that the proposed encoding scheme and the proposed fitness functions are effective in finding accurate, compact, and interpretable Takagi-Sugeno fuzzy models. From the simulation results, it is shown that the proposed algorithm can successfully find fuzzy models that approximate the given unknown function accurately with a compact number of fuzzy rules and membership functions. At the same time, the fuzzy models use interpretable antecedent membership functions, which are helpful in understanding the underlying behavior of the obtained fuzzy models.


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"