JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects.

Biomaterials 2007 Februrary
Endovascular stents made of the superelastic nickel-titanium alloy Nitinol are subjected in service to tens of millions of loading cycles and even "single-event" overloads, both of which can potentially result in fracture and/or complete failure of the device. A fracture-mechanics-based methodology can provide a means to quantify relevant material parameters critical to the design against such failures. However, there is a dearth of relevant experimental data in the literature on such fracture-mechanics-based approaches to fatigue in Nitinol; furthermore, that which does exist invariably pertains to product forms that are not appropriate for stent manufacture, e.g., bulk Nitinol bar and strip. Consequently, the current work is focused on characterizing in vitro both subcritical and critical crack growth (fatigue-crack growth and R-curve fracture toughness) behavior in thin-walled ( approximately 400microm thick) Nitinol tubing similar to that used for medical device manufacture (following shape-setting procedures to flatten the material), with a resultant austenite finish temperature of A(f) approximately 25-30 degrees C, identical to self-expanding Nitinol stents. Fatigue-crack growth behavior, measured in Hanks' Balanced Saline Solution over a wide spectrum of growth rates (down to 10(-10)m/cycle) and at a range of positive load ratios (R=0.1-0.7), revealed significantly higher fatigue thresholds than had been previously reported for bulk Nitinol material. In addition, we examine the critical effect of test frequency, as most fatigue experiments on Nitinol have been performed at 30Hz or above, despite the fact that this is far in excess of the frequency of physiological loading. Finally, the fracture toughness properties are characterized in thin-section Nitinol and show marked crack-resistance (R-curve) behavior with a dependence on crack-growth angle (with respect to the tube drawing axis); additionally, measured toughnesses are found to be lower than has been previously reported for bulk Nitinol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app