Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Intermolecular vibrational coherence in bacteriochlorophyll a with clustered polar solvent molecules.

We show that resonant impulsive excitation of the Qy absorption band of bacteriochlorophyll a (BChl) launches a rapidly damped (gamma < 200 fs) ground-state coherent wave-packet motion that arises from intermolecular modes with clustered solvent molecules. Femtosecond pump-probe, dynamic-absorption signals were obtained at room temperature with BChl solutions in pyridine, acetone, and 1-propanol. The vibrational coherence observed in the 0-800-fs regime is modeled in the time domain by two (or three, in the case of 1-propanol) modulation components with asymmetric, inhomogeneously broadened line shapes and frequencies in the 100-200-cm(-1) range. The mean frequency of the vibrational coherence exhibits at least a quadratic dependence on the dipole moment of the solvent molecules and a y-intercept in the 100-cm(-1) regime. This trend is modeled by an expression for the natural frequency of a "6-12" potential composed of attractive terms from van der Waals forces and a repulsive term from the exchange (Pauli exclusion) force. The model suggests that comparable contributions to the potential are provided by the dipole-dipole and London dispersion interactions. These results support the hypothesis that the low-frequency vibrational modes in the 100-cm(-1) regime that are coupled to the light-driven charge-separation reactions in the reaction center from purple bacteria are derived from intermolecular vibrational modes between the chromophores and the surrounding protein medium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app