Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanisms underlying lysophosphatidylcholine-induced potentiation of vascular contractions in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat aorta.

BACKGROUND AND PURPOSE: The effect of lysophosphatidylcholine (LPC) on aortic contractions in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a type 2 diabetic model, was studied.

EXPERIMENTAL APPROACH: Using OLETF rats and control (Long Evans Tokushima Otsuka (LETO)) rats, the effects of LPC on the contractions induced by high-K(+) (10-40 mM), UK14,304 (10 approximately 100 nM; a selective alpha(2)-adrenoceptor agonist) and sodium orthovanadate (SOV; 10 microM approximately 3 mM) in endothelium-denuded aortae were compared. Aortic ERK activity and the mRNA expression for GPR4 (a putative LPC receptor) were also measured.

KEY RESULTS: OLETF rats exhibited (vs. age-matched LETO rats): (1) greater potentiation of high-K(+)-induced contraction by 10 microM LPC - a potentiation attenuated by 10 microM genistein, protein tyrosine kinase (PTK) inhibitor, (2) greater potentiation of UK14,304 (10 approximately 100 nM)-induced contractions by LPC (1 microM approximately 10 microM) - a potentiation attenuated by 10 microM genistein, 50 microM tyrphostin A23 (PTK inhibitor) or 10 microM PD98059 (MEK 1/2 inhibitor), (3) greater basal and LPC (1 microM)-induced ERK activities, (4) greater basal and 100 nM UK14,304-stimulated ERK2 activities in both the absence and presence of 10 microM LPC, (5) greater SOV (10 microM approximately 3 mM)-induced contractions, (6) greater potentiation of SOV-induced contractions by 10 microM LPC - a potentiation suppressed by 10 microM PD98059 or 10 microM genistein, (7) upregulation of GPR4 mRNA.

CONCLUSIONS AND IMPLICATIONS: These results suggest that the LPC-induced potentiation of contractions in the OLETF rat aorta may be attributable to increased PTKs or ERK activity and/or to receptor upregulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app