Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression of connexins 36, 43, and 45 during postnatal development of the mouse retina.

Gap junction channels formed by connexins (Cx) may play essential roles in some processes that occur during retinal development, such as apoptosis and calcium wave spread. The present study was undertaken to determine the distribution pattern of Cx36, Cx43, and Cx45 by immunofluorescence, as well as their gene expression levels by quantitative PCR during postnatal development of the mouse retina. Our results showed an increased expression of neuronal Cx36 from P1 until P10, when this Cx reached adult levels, and it was mainly distributed in the outer and inner plexiform layers. In turn, Cx43 was almost absent in retinal progenitor cells at P1, it became more prominent in glial cell processes about P10, and did not change until adulthood. Double-labeling studies in situ and in vitro with antivimentin, a Müller cell marker, confirmed that Cx43 was expressed by these cells. In addition, quantitative PCR showed that Cx43 and vimentin shared very similar temporal expression patterns. Finally, in contrast to Cx36 and Cx43, Cx45 mRNA was strongly down-regulated during development. In early postnatal days, Cx45 was seen ubiquitously distributed throughout the retina in cells undergoing proliferation and differentiation, as well in differentiated neurons. In adult retina, this protein had a more restricted distribution both in neurons and glial cells, as confirmed in situ and in vitro. In conclusion, we observed a distinct temporal expression pattern for Cx36, Cx43, and Cx45, which is probably related to particular roles in retinal function and maintenance of homeostasis during development of the mouse retina.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app