Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Diflunisal stabilizes familial amyloid polyneuropathy-associated transthyretin variant tetramers in serum against dissociation required for amyloidogenesis.

Neuroscience Research 2006 December
Transthyretin (TTR) tetramer dissociation, misfolding and misassembly are required for the process of amyloid fibril formation associated with familial amyloid polyneuropathy (FAP). Preferential stabilization of the native TTR tetramer over the dissociative transition state by small molecule binding raises the kinetic barrier of tetramer dissociation, preventing amyloidogenesis. Two NSAIDs, diflunisal and flufenamic acid, and trivalent chromium have this ability. Here, we investigated the feasibility of using these molecules for the treatment of FAP utilizing serum samples from 37 FAP patients with 10 different mutations. We demonstrated that the TTR heterotetramer structures in FAP patients serum are significantly less stable than that in normal subjects, indicating the instability of the variant TTR structure is a fundamental cause of TTR amyloidosis. We also demonstrated that therapeutic serum concentrations of diflunisal (100-200 microM) stabilized serum variant TTR tetramer better than those of flufenamic acid (35-70 microM). Trivalent chromium at levels obtained by oral supplementation did not stabilize TTR in a statistically significant fashion. Importantly, diflunisal increased serum TTR stability in FAP patients beyond the level of normal controls.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app