Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Uncoupling of endothelial nitric oxidase synthase by hypochlorous acid: role of NAD(P)H oxidase-derived superoxide and peroxynitrite.

OBJECTIVE: The aim of the present study is to determine whether hypochlorous acid (HOCl), the major oxidant of leukocyte-derived myeloperoxidase (MPO), oxidizes the zinc-thiolate center of endothelial nitric oxide synthase (eNOS) and uncouples the enzyme.

METHODS AND RESULTS: Exposure of purified recombinant eNOS to HOCl (> or = 100 micromol/L) released zinc and disrupted the enzyme-active eNOS dimers. In parallel with increased detections of both O2*- and ONOO-, clinically relevant concentrations of HOCl disrupted eNOS dimers in cultured human umbilical vein endothelial cells (HUVEC) at concentration 10- to 100-fold lower than those required for recombinant eNOS. In HUVEC, HOCl increased the translocation of both p67(phox) and p47(phox) of NAD(P)H oxidase and the phosphorylation of atypical protein kinase C-zeta. Further, genetic or pharmacological inhibition of either NAD(P)H oxidase-derived O2*- or PKC-zeta or NOS abolished the effects of HOCl on eNOS dimers. Consistently, HOCl increased both O2*- and ONOO- and eNOS dimer oxidation in isolated mouse aortas from C57BL/6 but less in those of gp91(phox) knock-out mice. Finally, in human carotid atherosclerotic arteries, eNOS predominantly existed as monomers in parallel with increased staining of both MPO and 3-nitrotyrosine.

CONCLUSIONS: We conclude that HOCl uncouples eNOS by ONOO- generated from PKC-zeta-dependent NAD(P)H oxidase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app