JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Molecular mechanisms mediating vascular calcification: role of matrix Gla protein.

Nephrology 2006 October
Patients with chronic kidney disease (CKD) have a higher incidence of vascular calcification and a greatly increased risk of cardiovascular death. The mechanisms involved in the accelerated vascular calcification observed in CKD have recently become clearer, leading to the hypothesis that a lack of natural inhibitors of calcification may trigger calcium deposition. One of these inhibitory factors, matrix Gla protein (MGP), is the focus of the present review. MGP, originally isolated from bone, is a vitamin K-dependent protein that is also highly expressed by vascular smooth muscle cells. MGP has been confirmed as a calcification-inhibitor in numerous studies; however, its mechanism of action is not completely understood. It potentially acts in several ways to regulate calcium deposition including: (i) binding calcium ions and crystals; (ii) antagonizing bone morphogenetic protein and altering cell differentiation; (iii) binding to extracellular matrix components; and (iv) regulating apoptosis. Its expression is regulated by several factors including retinoic acid, vitamin D and extracellular calcium ions, and a reduced form of vitamin K (KH2) is important in maintaining MGP in an active form. Therefore, strategies aimed at increasing its expression and activity may be beneficial in tipping the balance in favour of inhibition of calcification in CKD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app