Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Molecular analysis of ammonia-oxidizing bacteria community in intermittent aeration sequencing batch reactors used for animal wastewater treatment.

Bacterial communities and betaproteobacterial ammonia-oxidizing bacteria (AOB) communities were evaluated seasonally in an intermittent-aeration sequencing batch process (SBR, plant A) and in 12 other livestock wastewater treatment plants (WWTP): eight SBRs and four conventional activated-sludge systems. Microbial communities were analysed by reverse transcription polymerase chain reaction followed by denaturing-gradient gel electrophoresis (DGGE) and the construction of clone libraries for 16S rRNA and ammonia monooxygenase (amoA) genes. In plant A, the dominant bacteria were as-yet-uncultured bacteria of Bacteroidetes and Proteobacteria, and the DGGE profiles showed that the bacterial communities were stable during a given treatment cycle, but changed seasonally. In betaproteobacterial AOB communities, two AOB phylotypes (members of the Nitrosomonas ureae-oligotropha-marina cluster) were dominant during the seasons in plant A. Although the dominant AOB phylotypes differed among the 13 WWTPs, dominance by one or two AOB phylotypes was commonly observed in all plants. Sequencing of the DGGE bands indicated that amoA sequences belonging to the Nitrosomonas europaea-eutropha cluster were dominant in 11 plants, where the ammonia-nitrogen concentration was high in the raw wastewater, whereas those belonging to the Nitrosomonas ureae-oligotropha-marina cluster were dominant in two plants where the concentration was relatively low. Even though we detected many minor amoA sequences by means of five clone libraries for the A to D plants, no libraries comprised both amoA sequences belonging to the two clusters, indicating that the dominant AOBs were defined by cluster level in each plant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app