JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor.

The pH and hydraulic retention time (HRT) of an anaerobic sequencing batch reactor (ASBR) were varied to optimize the conversion of carbohydrate-rich synthetic wastewater into bio-hydrogen. A full factorial design using evolutionary operation (EVOP) was used to determine the effect of the factors and to find the optimum condition of each factor required for high hydrogen production rate. Experimental results from 20 runs indicate that a maximum hydrogen production rate of 4,460-5,540 mL/L/day under the volumetric organic loading rate (VOLR) of 75 g-COD/L/day obtained at an observed design point of HRT = 8 h and pH = 5.7. The hydrogen production rate was strongly dependent on the HRT, and the effect was statistically significant (P < 0.05). However, no significant effect (P > 0.05) was found for the pH on the hydrogen production rate. When the ASBR conditions were set for a maximum hydrogen production rate, the hydrogen production yield and specific hydrogen production rate were 60-74 mL/g-COD and 330-360 mL/g-VSS/day, respectively. The hydrogen composition was 43-51%, and no methanogenesis was observed. Acetate, propionate, butyrate, valerate, caproate, and ethanol were major liquid intermediate metabolites during runs of this ASBR. The dominant fermentative types were butyrate-acetate or ethanol-acetate, representing the typical anaerobic pathway of Clostridium species. This hydrogen-producing ASBR had a higher hydrogen production rate, compared with that produced using continuous-flow stirred tank reactors (CSTRs). This study suggests that the hydrogen-producing ASBR is a promising bio-system for prolonged and stable hydrogen production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app