Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inactivation of RASSF2A by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma.

RASSF2 can bind directly to K-Ras and function as a negative effector of Ras protein. RASSF2A is the only isoform of RASSF2 that contains CpG islands in its promoter and it has been reported to be inactivated by its promoter methylation in several human cancers. In the present study, we investigated the correlation of RASSF2A expression with its promoter methylation in nasopharyngeal carcinoma (NPC). Expression of RASSF2A was down-regulated in 80% (4/5) of NPC cell lines. Decreased RASSF2A expression was also observed in NPC primary tumors compared with normal nasopharyngeal epithelia. Promoter methylation of RASSF2A could be detected in all the RASSF2A-silenced cell lines (4/5) of the NPC cell lines and 50.9% (27/53) of primary tumors, but not in any of the normal epithelia. RASSF2A-methylated cases showed a significantly lower level of RASSF2A expression than unmethylated cases. Loss of RASSF2A expression can be greatly restored by the methyltransferase inhibitor 5-aza-dC in NPC cell lines. In addition, patients with methylated RASSF2A presented a higher frequency of lymph node metastasis (p < 0.05). Ectopic expression of RASSF2A in RASSF2A-silenced and -methylated NPC cell line CNE2 shows that RASSF2A could inhibit cell cycle progression, colony formation and cell migration, which provided further evidence that RASSF2A is a candidate tumor suppressor gene. In conclusion, RASSF2A, a candidate tumor suppressor gene (TSG), is frequently inactivated by its promoter methylation and this aberrant methylation correlates with lymph node metastasis in NPC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app