JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Two-photon imaging of synaptic plasticity and pathology in the living mouse brain.

Two-photon microscopy (TPM) has become an increasingly important tool for imaging the structure and function of brain cells in living animals. TPM imaging studies of neuronal structures over intervals ranging from seconds to years have begun to provide important insights into the structural plasticity of synapses and the modulating effects of experience in the intact brain. TPM has also started to reveal how neuronal connections are altered in animal models of neurodegeneration, acute brain injury, and cerebrovascular disease. Here, we review some of these studies with special emphasis on the degree of structural dynamism of postsynaptic dendritic spines in the adult mouse brain as well as synaptic pathology in mouse models of Alzheimer's disease and cerebral ischemia. We also discuss technical considerations that are critical for the acquisition and interpretation of data from TPM in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app