JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth.

Nature 2006 September 29
Brassinosteroid and auxin decisively influence plant development, and overlapping transcriptional responses to these phytohormones suggest an interaction between the two pathways. However, whether this reflects direct feedback or merely parallel inputs on common targets is unclear. Here we show that in Arabidopsis roots, this interaction is mediated by BREVIS RADIX (BRX), which is required for optimal root growth. We demonstrate that the brx phenotype results from a root-specific deficiency of brassinosteroid and is due to reduced, BRX-dependent expression of a rate-limiting enzyme in brassinosteroid biosynthesis. Unexpectedly, this deficiency affects the root expression level of approximately 15% of all Arabidopsis genes, but the transcriptome profile can be restored to wild type by brassinosteroid treatment. Thus, proper brassinosteroid levels are required for the correct expression of many more genes than previously suspected. Moreover, embryonic or post-embryonic brassinosteroid application fully or partially, respectively, rescues the brx phenotype. Further, auxin-responsive gene expression is globally impaired in brx, demonstrating that brassinosteroid levels are rate-limiting for auxin-responsive transcription. BRX expression is strongly induced by auxin and mildly repressed by brassinolide, which means that BRX acts at the nexus of a feedback loop that maintains threshold brassinosteroid levels to permit optimal auxin action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app