RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance.

Trichosporon asahii is the most common cause of fatal disseminated trichosporonosis, frequently associated with indwelling medical devices. Despite the use of antifungal drugs to treat trichosporonosis, infection is often persistent and is associated with high mortality. This drove our interest in evaluating the capability of T. asahii to form a biofilm on biomaterial-representative polystyrene surfaces through the development and optimization of a reproducible T. asahii-associated biofilm model. Time course analyses of viable counts and a formazan salt reduction assay, as well as microscopy studies, revealed that biofilm formation by T. asahii occurred in an organized fashion through four distinct developmental phases: initial adherence of yeast cells (0 to 2 h), germination and microcolony formation (2 to 4 h), filamentation (4 to 6 h), and proliferation and maturation (24 to 72 h). Scanning electron microscopy and confocal scanning laser microscopy revealed that mature T. asahii biofilms (72-h) displayed a complex, heterogeneous three-dimensional structure, consisting of a dense network of metabolically active yeast cells and hyphal elements completely embedded within exopolymeric material. Antifungal susceptibility testing demonstrated a remarkable rise in the MICs of sessile T. asahii cells against clinically used amphotericin B, caspofungin, voriconazole, and fluconazole compared to their planktonic counterparts. In particular, T. asahii biofilms were up to 16,000 times more resistant to voriconazole, the most active agent against planktonic cells (MIC, 0.06 microg/ml). Our results suggest that the ability of T. asahii to form a biofilm may be a major factor in determining persistence of the infection in spite of in vitro susceptibility of clinical isolates.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app