Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Streptomycin reduces stretch-induced membrane permeability in muscles from mdx mice.

It is well-known that muscles from mdx mice are more susceptible to membrane damage from eccentric contractions than wild-type muscles. The present study tested the hypothesis that the stretch-induced membrane permeability in dystrophic muscle is due to Ca(2+) entry through stretch-activated channels (SACs) and the subsequent activation of Ca(2+) -dependent degradative pathways. Eccentric contractions were carried out on muscles from mdx and wild-type mice, both on isolated muscles and on intact mice subjected to downhill running on a treadmill. In isolated muscles the SAC blockers, streptomycin and GsMTx4, improved force and significantly reduced the uptake of procion orange dye into fibres from mdx muscles, which increased progressively over 60 min after the eccentric contractions. In experiments on intact mdx mice, streptomycin also partially prevented the reduced force and the increased membrane permeability (Evans Blue Dye uptake). The results suggest that Ca(2+) entry through SACs activates Ca(2+) -dependent pathways, which are the main cause of the increased membrane permeability in mdx muscle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app